PASSIVE OPTICAL NETWORK

POWER BUDGET

OBJECTIVE

- TO REALISE ABOUT THE OPTICAL FIBER LINK WITH POWER
- TO ENSURE THAT THE RECEIVER CAN RECEIVE SUFFICIENT POWER
- TO GURANTEE ON DESIGNED OPTICAL NETWORK WILL WORK WITH MINIMUM TRANSMITTER POWER
- TO DETERMINE A NETWORK WHICH HAVE THE SUCCESSIVE DATA RECEPTION, BEFORE IMPLEMENTING THE OPTICAL NETWORK.

POWER BUDGET

Power budget is the allocation of available optical power among various loss-producing mechanisms in order to ensure that adequate signal strength is available at the receiver.

Losses:

- Coupling Loss
- Splice Loss
- Fiber Attenuation
- Connector Loss

PON

EXAMPLE PON LINK:

ESTIMATION TABLE:

Link-Loss Factor	Estimated Link-Loss Value		
Higher-order mode losses	Single-mode—None		
	Multimode—0.5 dB		
Modal and chromatic	Single-mode—None		
dispersion	Multimode—None, if product of bandwidth and distance is less		
	than 500 MHz-km		
Connector	0.5 dB		
Splice	0.5 dB		
Fiber attenuation	Single-mode—0.5 dB/km		
	Multimode—1 dB/km		

TABULATION

Туре	Loss	No. of Components in Total Link	Total Loss
Fiber Loss	2 dB/Km	5 Km	10 dB
Connector Loss	1.5 dB	5	7.5 dB
Splice Loss	0.5 dB	1	0.5 dB

Total Link Loss = 18 dB

CALCULATION

POWER BUDGET

$$PB = PT - PR$$

Power budget (PB)
Minimum transmitter power (PT)
Minimum receiver sensitivity (PR)
Power Budget Unit should be in dBm

EXAMPLE PROBLEM

Quest: Assume that minimum transmitter power is -15dBm and minimum receiver sensitivity is - 28dBm, Find the Power Budget for this optical fiber network?

```
PB = PT - PR

PB = -15 dBm - (-28 dBm)

PB = 13 dBm
```

This power is allocated for the link loss of this network.

POWER MARGIN:

The amount of power available after subtracting attenuation or link loss (LL) from the power budget (PB) is the POWER MARGIN (PM).

$$PM = PB - LL$$

PM - POWER MARGIN

PB - POWER BUDGET

LL - LINK LOSS

Note:

If the calculated Power Margin of PON Network is greater than zero (PM > 0), That's indicating the PON link has sufficient power for the successful transmission.

LINK LOSS

```
Link Loss = [fiber length (km) x fiber attenuation per km] + [splice loss x # of splices] + [connector loss x # of connectors] + [safety margin]
```

EXAMPLE PROBLEM

Quest: Calculate Power Margin(PM) and link loss (LL) of a optical link which has attenuation (2 km @ 1 dB/km, or 2 dB) and loss for five connectors (0.5 dB per connector, or 2.5 dB) and two splices (0.5 dB per splice, or 1 dB) (assume safety margin as 0.5 dB)

Solution:

```
LL = 2 km (1 dB/km) + 5 (0.5 dB) + 2 (0.5 dB) + 0.5 dB

LL = 2 dB + 2.5 dB + 1 dB + 0.5 dB

LL = 6 dB

PM = PB - LL

PM = 13 - 6 = 7 dB
```

MAX.LENGTH OF THE FIBER

Quest: Find maximum Length of a optical link which has Power Budget (PB) 13dB and attenuation (1 dB/km @ 2 km or 2 dB) and loss for five connectors (0.5 dB per connector, or 2.5 dB) and two splices (0.5 dB per splice or 1 dB) (assume safety margin as 0.5 dB)

Solution:

Max. Length of the fiber =
$$\frac{13 - (2 + 2.5 + 1 + 0.5)}{1}$$
 = 7 Km

DESIGN

FIBER LOSS = 3.5 dB/km

All Receiver Sensitivity = -42 dBm

STEP 1: FIND POWER BUDGET

$$PB = PT - PR = 0 - (-42) = 42 dBm$$

STEP 2: FIND LINK LOSS

$$LL = (L*3.5) + (2*2) + (1*3) + SPLITTER LOSS +1$$

$$LL = (5*3.5) + (2*2) + (1*3) + 4.77 + 1 = 30.27 dB$$

STEP 3: FIND MAX. LENGTH

Max. Length =
$$(42 - 30.27) / 3.5 = 3.35 \text{ km}$$

CONCLUSION:

- 1. RECEIVERS 2 & 3 CAN'T RECEIVE DUE TO DISTANCE
- If we increase the receiver sensitive power, Power Budget will increase.
- So High Sensitive receivers (Low power sensitivity) need to be installed long distance link for reliable transmission.

Case 1:

```
If all receivers sensitivity = -46 dBm
Max. Fiber length = 4.49 km
```

Case 2:

```
If all receivers sensitivity = -50 dBm

Max. Fiber length = ? km
```

Max. Rx Input Power

FROM THE POWER BUDGET ANALYSIS,

Available Power at Receiver Should lie between here-**Power Margin** Min.Rx sensitivity