LOW NOISE AMPLIFIER AND POWER AMPLIFIER SPECIFICATIONS

IMPORTANCE OF AMPLIFIERS

- Wireless Transmission suffers from the path loss (loss due to wireless medium) and also leads to failure in signal reception.
- To increase the signal power in wireless channel and to make the receiver to receive the signal with required signal power, Amplifiers are required in wireless transceivers.
- Power Amplifiers are used to increase the power of transmission signal and helps to increase the possibility to the reception.
- LNA (Low Noise Amplifier) are used in reception which is increasing the received signal power with minimum noise. That's why this amplifier is called Low Noise Amplifier.

TRANSCEIVER FRONT END

U. BHANU CHANDER M.E

HOW AMPLIFIERS HELPS ?

- Previously shown figure, explains that the Maximum power loss occurred in free space, commonly known as Free Space Loss.
- Some times the received signal power getting lower than the receiver sensitivity.
- Amplifiers provide some gain to the signal and helps to increase the signal power for receiver requirement.
- LNA (Low Noise Amplifier) is focused to maintain the required SNR level at the receiver end.

RECEIVER SECTION

PROPERTIES	PARAMETERS CAN AFFECT THE PROPERTIES
LINEARITY	IIP3
SENSITIVITY	NOISE FIGURE
SELECTIVITY	FILTER CHARACTERISTICS

U. BHANU CHANDER M.E

LNA PARAMETERS

- OPERATING FREQUENCY BAND
- GAIN
- NOISE FIGURE
- OUTPUT POWER 1 dB COMPRESSION POINT
- OUTPUT THIRD ORDER INTERCEPT POINT (OIP3)
- INPUT AND OUTPUT VSWR

LNA TAMP 960 LN+

Electrical Specifications at 25°C

Parameter	Condition (MHz)	Min.	Тур.	Max.	Units			
Frequency Range		824		960	MHz			
	824 - 960		0.55	0.80				
Noise Eigure	824 - 894		0.60	0.80	db			
Noise Figure	880 - 915		0.55	0.70	ub			
	925 - 960		0.55	0.70				
	824 - 960	16.5	18.0					
Cain	824 - 894	16.5	18.0		dD			
Gam	880 - 915	16.5	18.0		aв			
	925 - 960	16.5	17.5					
	824 - 960		± 0.6	± 1.2				
Cain Elathore	824 - 894		± 0.4	± 0.8	dD			
Gain Flatiless	880 - 915		± 0.2	± 0.4	uв			
	925 - 960		± 0.2	± 0.4				
	824 - 960	15.5	16.5		dBm			
Output Power at 1dP compression	824 - 894	15.5	16.5					
Output Power at Tub compression	880 - 915	15.5	16.5					
	925 - 960	15.5	16.5					
	824 - 960		30					
Output third order intercent point (OIP2)	824 - 894		30		dDm			
Output third order intercept point (OIP3)	880 - 915		30		UBIII			
	925 - 960		30					
	824 - 960		1.1					
Insuit VSWD	824 - 894		1.1					
Input vSwR	880 - 915		1.1		:1			
	925 - 960		1.1					
	824 - 960		1.4					
Output VOWP	824 - 894		1.3					
	880 - 915		1.4		- 1			
	925 - 960		1.5					
DC Supply Voltage			5.0		V			
DC Supply Current			40	45	mA			

U. BHANU CHANDER M.E

http://bhanuchander210.github.io

PARAMETERS VS FREQUENCY

TYPICAL POWER AND FLAT BAND

Maximum Ratings

Parameter	Ratings
Operating Temperature	-40°C to 85°C
Storage Temperature	-55°C to 100°C
Operating Voltage	5.5 V
Input RF Power (no damage)	+10 dBm
Power Consumption	250 mW

Permanent damage may occur if any of these limits are exceeded.

POWER AMPLIFIER - HELA 10

Electrical Specifications at 25°C

KIT ¹ NO.	FREQ. (MHz)	SMH		G (iAIN ² (dB)		MAXIMUM POWER (dBm)		MAXIMUM POWER (dBm)		IUM ER n)	DYN RA	AMIC NGE	VS (:	WR⁴ 1)	PC	DC WER	THERMAL RESIS-
		0					Our (1 dB 0	tput Compr.)	1	NF (dB)	IP3 (dBm)	IN	OUT	Volt (V)	Current (mA)	IANCE		
	f _L -f _U		Min.	Typ.	Max.	Typ. Flatness	Typ.	Min.	(no damage)	Тур.	Typ.	Тур.	Typ.	Nom.	Max.	θjc ° C/W		
HELA-10A+	50-1000	75	9.5	12	13	±0.4	30	26	20	3.5	47	1.22	1.22	12	525	6		
HELA-10B+	50-1000	50	9.5	12	13	±0.4	30	26	20	3.5	47	1.22	1.22	12	525	6		
HELA-10C+	5-450	75	9.3	11.4	12.5	±0.4	30	26	20	3.5	48	1.3	1.22	12	525	6		
HELA-10D+	8-300	50	9.3	11	12.5	±0.4	30	26	20	3.5	48	1.2	1.2	12	525	6		

1. Kit consists of HELA-10 plus transformers, see table below.

2. Includes transformer losses at input & output.

3. Open load is not recommended, potentially can cause damage. With no load, derate max. input power by 20 dB.

4. For 75 ohm. For 50 ohm, VSWR increases from 1.2:1 at 1 GHz to 2.0:1 at 50MHz.

5. Thermal resistance is from junction to heat slug. (mounting paddle).

LOW NOISE AMPLIFIER AND POWER AMPLIFIER

PARAMETER	SHOULD BE					
OPERATING FRQUENCY BAND	HIGH					
NOISE FIGURE	LOW					
GAIN	HIGH					
DYNMIC RANGE • P1 dB • OIP3	HIGH					
VSWR	LOW (NEAR TO 1)					
THERMAL RESISTANCE	LOW					
FLAT NESS	LOW					

THANK YOU !!